AstronomieAntwoorden
Zonnecoördinatentransformatiebenaderingen


[AA] [Woordenboek] [Antwoordenboek] [UniversumFamilieBoom] [Wetenschap] [Sterrenhemel] [Planeetstanden] [Reken] [Colofon]

1. Van eclipticale lengte naar rechte klimming ... 2. Van rechte klimming naar eclipticale lengte ... 3. Van eclipticale lengte naar declinatie

1. Van eclipticale lengte naar rechte klimming

\begin{equation} \tan α = \tan λ \cos ε \end{equation}

Dit kan benaderd worden (tot op de zesde orde van \(ε\)) met

\begin{align} α = & λ - \left( \frac{1}{4} ε^2 + \frac{1}{24} ε^4 + \frac{17}{2880} ε^6 \right) \sin(2 λ) \notag \\ & + \left( \frac{1}{32} ε^4 + \frac{1}{96} ε^6 \right) \sin(4 λ) \notag \\ & - \frac{1}{192} ε^6 \sin(6 λ) \end{align}

Als \(ε\) niet dicht bij 0° maar dicht bij 180° ligt, dan stellen we \(ε = 180° + ε_1\) en dan kunnen we benaderen

\begin{align} α = & λ + \left( \frac{1}{4} ε_1^2 + \frac{1}{24} ε_1^4 + \frac{17}{2880} ε_1^6 \right) \sin(2 λ) \notag \\ & - \left( \frac{1}{32} ε_1^4 + \frac{1}{96} ε_1^6 \right) \sin(4 λ) \notag \\ & + \frac{1}{192} ε_1^6 \sin(6 λ) \end{align}

2. Van rechte klimming naar eclipticale lengte

Hiervoor vinden we

\begin{align} λ = & α + \left( \frac{1}{4} ε^2 + \frac{1}{24} ε^4 + \frac{17}{2880} ε^6 \right) \sin(2 α) \notag \\ & + \left( \frac{1}{32} ε^4 + \frac{1}{96} ε^6 \right) \sin(4 α) \notag \\ & + \frac{1}{192} ε^6 \sin(6 α) \end{align}

en een andere benadering is

\begin{align} λ = & α - \left( \frac{1}{4} ε_1^2 + \frac{1}{24} ε_1^4 + \frac{17}{2880} ε_1^6 \right) \sin(2 α) \notag \\ & - \left( \frac{1}{32} ε_1^4 + \frac{1}{96} ε_1^6 \right) \sin(4 α) \notag \\ & - \frac{1}{192} ε_1^6 \sin(6 α) \end{align}

3. Van eclipticale lengte naar declinatie

\begin{equation} \sin δ = \sin λ \sin ε \end{equation}

Hiervoor is een benadering

\begin{align} δ = & \left( ε - \frac{1}{6} ε^3 + \frac{1}{120} ε^5 \right) \sin(λ) \notag \\ & + \left( \frac{1}{6} ε^3 - \frac{1}{12} ε^5 \right) \sin(λ)^3 \notag \\ & + \frac{3}{40} ε^5 \sin(λ)^5 \end{align}

Een ander benadering volgt als je overal \(ε\) vervangt door \(-ε_1\).



[AA]

talen: [en] [nl]

//aa.quae.nl/nl/reken/transformatie.html;
Laatst vernieuwd: 2016-02-07